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“Mathematics as an expression of the human mind reflects the active will, the
contemplative reason, and the desire for aesthetic perfection. The basic elements are
logic and intuition, analysis and construction, generality and individuality.”

(Courant and Robbins, “What is Mathematics?”’)

The above definition involves six antithetical elements expressed by the mind through
will, reason, and artistic sensibility. What does a mathematician do with these
elements? He explores numericity. Numericity is the ability to form precise
groupings or collections of objects in various relationships.  Numericity is
sometimes called “mapping”, and groupings or collections are sometimes called
“sets”. Mathematics arose as a technology for counting and measuring things — a
technology of theoretical or applied numericity. Its basic subject matter is to
discover and/or record the precise possible relationships among various creations
when subjected to certain defined rules. Such creations may be of any kind, and the

rules for analysis and construction (postulates) and logic can be of any kind.

Mathematicians generally believe that natural numbers, integers, and rational numbers
are infinitely many, but still countable. They are also equally infinite — these sets
are of equal size and we can map them in one-to-one correspondence. On the other
hand, they commonly assert that irrational numbers — the additional numbers that
form a continuous set of real numbers — are infinitely more numerous than the natural
numbers, integers, and rational numbers and therefore somehow fundamentally
uncountable. Most of mathematics involves working with real numbers or their
equivalents (such as continuous lines). When mathematics becomes primarily
populated by mathematical objects that in principle can not be counted, then I start to

wonder whether it is turning into “mythematics”.

I believe the problem with the set of real numbers arises from the way in which we
understand the notion of infinity. Infinity does not mean that there is immeasurably
“more” of something. “Infinite” means “not bounded”, “not defined”. Infinite space
does not mean that space goes on and on forever. It simply means that nobody has
bothered to probe its limits or to place some limits on it. It means the size of the space
is indefinite. This, of course, may include a sense of largeness — but not necessarily.

To say that there are infinitely many natural numbers (counting numbers) simply
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means that there are as many as you like. You are free to choose how many you
would like to use. The upper boundary of the set of natural numbers is undefined.
You decide if and where to terminate a counting process. A variable is another form
of infinity. In ordinary algebra we are free to assign any number of possible values
to a variable. An algebraic expression (e.g., y = x + 3) defines a relationship that
may exist among constants (3), variables (x), and operators (+) according to certain
assumed rules (postulates). Ordinarily the variables express the property of
“infinity” in algebraic expressions. A special kind of infinity, represented by the o
sign, means that we consider the whole set of natural numbers (or an equivalent set)
all at once. However, if we use this notion of “infinitely many” as a number in

equations, the rules break down (e.g., 0 + 5 =0?! -0 =577?)

The freedom to make decisions in the steps of a process is the essence of Observer
Physics (OP) and Observer Mathematics (OM). From this viewpoint natural
numbers and irrational numbers are equally “uncountable”. They are both
open-ended sets that leave one or more boundaries up to the “counter” to define.
The practical consequence of this is that mathematics (and its companion, physics)
empower the individual to make decisions about how to interpret the mental and

physical world.

Non-algebraic irrational numbers have a peculiar property that differentiates them
from rational numbers. The value of such a number can not be precisely defined.
It is in this sense alone that such a set can be considered to be “more” infinite than
natural or rational numbers. Mathematicians generally believe that they can not
precisely define the value of any particular non-algebraic irrational number. This is
a problem of viewpoint. It is like saying you can not count rational numbers in
“numerical” order (b > a) in the same way that you can count the natural numbers or

integers.

171, 1/2, 1/3, 1/4, 1/5, . . ..
2/1,2/2,2/3,2/4,2/5,.... = 1/1,1/2,2/1,3/1,2/2,1/3, 1/4, 2/3,3/2, . . ..
3/1,3/2,3/3,3/4,3/5, . ...

No matter how you try to count rational numbers, you can not make them line up in
numerical order. However, you can lay them out in orderly arrays. And Cantor
showed that you also can count rational numbers in an orderly grid by proceeding

diagonally from the most clearly defined corner. In this way we can place the set of
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rational numbers into a one-to-one correspondence with the natural numbers. This
demonstration discovered by Cantor also hints at the elasticity of space: all the
rational numbers when laid out in a square grid equal all the natural numbers when
laid out in a single row. The same thing turns out to be true for continuous sets: lines

and planes (and n-dimensional spaces) all contain the same number of points.

Cantor used another diagonal method to demonstrate that you can always add new
irrational numbers to any supposedly complete list. He set up a hypothetical list of
all the infinite decimals between 0 and 1 (a complete set of real numbers), and then
“diagonalized” it to create a new number by changing the first digit of the first
number on the list, the second digit of the second number on the list, the third digit of
the third number on the list, and so on. This apparently generates a new number that
is not on his so-called complete list. Unfortunately, such a “demonstration proof”
does not prove anything at all, because we can also do this with any supposedly
complete list of natural numbers. Given a complete list that goes 1, 2, 3,4, ... n,
we can always come up with (n + 1), a new number that is apparently not on the list.
But, when we look closely at the new number, it turns out to be a perfectly good
number on the list. The same is true for the rational numbers. If we choose both an
upper and a lower bound to a set of rational numbers of any given size, we can always
insert as many new ones as we like in between the boundaries. We have a problem
here with the notion of completeness, the notion of treating a set with an undefined
property as a whole entity. Try picking up a section of hose in the middle when the
spigot is off but the nozzle is open and the hose is full of water. What happens?
Water may leak out of the nozzle because the hose (set) is not bounded at both ends

and the natural numbers (water molecules as a group) have no fully defined shape.

Cantor’s demonstration of the uncountability of the real numbers is complicated by
several problems with the decimal system. When we consider these problems we
discover that his demonstration actually always generates duplicate numbers on the
list, just like (n + 1) is just another natural number. The first problem is that all
decimals must be expressed in base two or larger. By definition you can not write
fractions written in decimal point format in unary base. Using base two as the
simplest possible example, we can create an algorithm for the list of decimal real
numbers between 0 and 1 so that the 1 digits in the decimals crawl to the right from
the decimal point as we go down the list. The first number on the list is 0.00000 . . . .
The last number on the list is 0.11111........ , which corresponds to 1.000000........
The decimal places gradually fill to the right with 1’s as we go down the list.

Eventually we end up with solid 1’s going to “infinity” and the decimal odometer flips
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over and zeroes out.
0.000000......
0.100000.......
0.010000.......
0.110000.......
0.001000.......

O.1111111.......

This gives us an infinite list that is not in numerical order, but is quite orderly.
However, our base is greater than 1, so the 1-digits in numbers greater than 0.000...
crawl slowly to the right as we go down the list. (In the case of higher bases the
digits higher than O crawl even slower.) Therefore, diagonalizing of this list and
flipping of the digits generates a new decimal, but the decimal ends with an infinitely
long string of 1’s. This brings up the second major problem with decimals.
Mathematicians disallow any binary decimal that ends with an infinite string of 1’s,
because it zeroes out and increments the first O that it encounters to the left up to 1.
(An analogous situation also holds for any other base.) For example, when we
diagonalize in the above list we end up with 0.0011111....... This “number”
translates into 0.0100000....., which is the second number on the list. So we start
with an infinitely long list that we have designed to be a very thorough catalog of
decimals, but when we diagonalize, we end up with a number that seems new at first
glance, but turns out to be already on the list when we look more closely. The notion
that it is not on the list is an illusion created by ignoring the fact that the decimal

system contains endless duplicate numbers that are complementary.

We might imagine that the list we gave is not actually complete. Perhaps it is only a
subset of the complete list. Let us consider a list that is randomly ordered and
contains endless numbers in all possible combinations that consist of infinitely
repeating decimals and infinitely non-repeating decimals with 1’s and 0’s distributed
on average with equal probability at each digit place (e.g., 0.1010101010101....... )
Our list contains all possible infinite sequences of 1’s and 0’s. It therefore must
contain all possible pairs of complementary decimals. For example, the complement
to 0.1010101.... is 0.0101010..... So both these numbers must be on the list. We
do not know the order of the list, but we know it is complete, and we also know that
every number on the list will have a complementary number where each 0 becomes a
1 and each 1 becomes a 0. Now let’s try to diagonalize. No matter what sequence

we find along the diagonal, the flip transformation of that sequence will be — by
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definition and the rule of Cantor’s diagonalizing procedure — the complementary
number for that sequence. By the definition of the contents of the list we know that
both the decimal produced by Cantor’s diagonalizing procedure and the
complementary number it transforms into when we flip the values of the digits must
be on the list and can not be new numbers. For example, if the diagonal decimal
happens to be the algebraic non-periodic decimal, 0.101001000100001....., then its
flip decimal will be 0.010110111011110..., and both numbers will be on the list by
our definition of the list, which is all we know about the list. Thus we disprove
the validity of Cantor’s “demonstration” of the uncountability of irrationals and
discover that irrationals are just as countable as natural numbers. We are unable to
demonstrate any “infinity” greater than that of the natural numbers when we interpret
“infinitude” in the sense of multitude (i.e., “how many”). Does this mean that
Cantor’s whole theory of transfinite numbers collapses, since it depends on the ability
to demonstrate the existence of “infinitude” greater than that of the natural numbers?
Perhaps we simply adjust our viewpoint and treat infinity as a dimension. Suppose
that the irrational numbers have an additional dimension of infinitude. We can then
imagine an entire hierarchy of mathematical sets that possess more and more different
properties or dimensions of infinitude. Thus we can count transfinite dimensions
just like we count ordinary dimensions. We simply reinterpret our notion of

transfinite numbers and perhaps it survives and perhaps takes us in new directions.

The apparent “greater infinitude” of irrational numbers does not mean that there are
infinitely many more of them than other infinite sets. It simply means that they are
less defined “value-wise” than other types of numbers. They take on a new property

of infinitude (non-definiteness). Let us examine this new property.

I call non-algebraic irrational numbers “peanut numbers”. This name derives from
the Styrofoam peanuts that are used as packing filler. Mathematicians invented
irrational numbers to solve the problem of continuity. Several thousand years ago
the Greeks already were bothered when they noticed irrational quantities showing up
in their beautifully rational system of geometry. For example, they found that the
diagonal of a unit square turned out to be the square root of 2. They could not
compute an exact value for the ratio of the square’s clearly real diagonal line length to
the unit side of the square. It was irrational. They also found that they could not
compute an exact value for what they called pi, the ratio of a circle’s circumference (C)
to its diameter (D). In a simple notation we write this ratio as follows: (mx = C / D).
The Greeks could represent this symbolically and conceptually, but they could not

reduce it to a precise ratio of two whole numbers. The handiest estimate turned out
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to be 22 /7. This was close, but no cigar. The appearance of such irrational values
in the simplest figures of plane geometry was very frustrating. Mathematicians
eventually decided that you can define certain irrational numbers by means of an
algebraic expression (e.g., square root of 2) or an infinite series that converges on the
specific value of the irrational number as a limit (e.g., 1 =4 — 4/3 + 4/5 — 4/7 + 4/9
-....). And they also were able to show that you can have irrationals that do not
have such finitely expressible monikers. And there can be any number of these
peanut numbers that can magically appear between any two numbers with

recognizable value. What gives here?

The simple answer is that the irrational peanut numbers are elastic space tokens.
One of the remarkable aspects of mathematics is that we can map numbers to points
on a line. This generates a relationship between numbers and space. We use this
principle regularly when we take out a ruler to measure the size of an object. A ruler
is an arbitrary object on which we make a series of equally spaced marks. Then we
arbitrarily assign numbers to the marks and use the marks as a standard gauge for
assigning numbers to “measure” the size of some other object. In fact, no object has
any particular size. Space is an arbitrary notion that is wholly defined by the
observer. People convince themselves that they live in a space of certain dimensions
and size by setting up standards of measurement (conventional rulers) and then
agreeing to talk about objects that they share from the viewpoint of these standard

measurements. Such a notion of space is entirely conventional.

The above is an example of a ruler with 6 vertical marks at equal intervals. In
between each vertical mark is a series of 9 dots that mark off smaller intervals,
fractions of the larger intervals. The vertical marks represent natural counting
numbers, so we can use them as a standard for measuring objects of similar “size”.
The dots represent rational numbers (fractions) and allow us to measure objects that
do not quite match in size the distance between vertical marks. We can insert as
many marks as we like between the existing marks, assigning to each an appropriate
rational number. We are only limited by the molecular structure of the ruler. At
some level of resolution we can no longer mark off finer gradations because we start
to fall into the gaps between the physical components of the ruler. Mathematicians
pretend that in mental space they can keep making finer and finer gradations, but that

also is an illusion. Eventually the whole thing turns to chaotic mush due to the
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Uncertainty Principle.

We can also make some marks on our ruler to represent certain algebraic irrational
values. For example, we can erect a square over one natural number unit and then
rotate the diagonal down until it marks off a point on the ruler that represents the
square root of 2. Or we can draw a circle with a diameter of 1 unit and then roll the

circle one cycle along the ruler and mark off the value of pi.

Mathematicians define a point as something that has no size. Size is the
fundamental property of space. However, if a point has no size, then you can not
generate spatial intervals with any number of points — by definition. This leaves the
mathematicians in a quandary. If they give a point any size, that becomes “arbitrary”
and not “pure” mathematics. If they deny the point any size, then they can not
generate the space in which to do geometry with these points. What to do? This is

where the irrational numbers come to the rescue.

Look at the ruler again. The marks on the ruler are supposed to represent pure
mathematical points that have no size. They are precise and exact. The actual
marks on the ruler have size and are not exact. So we have to pretend. Also, the
marks are made on a ruler that already exists in something we call space. It has size,
and so does every one of its components. The mathematician has scattered size-less
points onto a pre-existent space and arbitrarily assigned numerical values to them.
Now he wants to account for the continuity of the space. He can not do this with his
points alone. He needs something else. That something else is peanut numbers.

Another name for them is “gap” numbers. Another name is irrational numbers.

Euclid decided that two points determine a “straight” line. =~ Above you can see two
large points that represent the definition of a line. Through the two points I have
drawn the line. The two points can represent the end points of a line segment or
interval on the line. Or they can define the position of the line in undefined space.
We can add more points along the line — as many as we like — but two is the minimum
requirement. The points we add may or may not keep our line “straight”. The
notion of straightness remains a bit fuzzy and starts to depend on other fuzzy notions
such as extension. The problem of co-linearity is an interesting issue we will not

discuss here.

The key thing to notice here is that the two points we choose must not be coincidental.
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They can not be in the same place in space. Are two pure mathematical points that
exist in the same place still two points, or do they become indistinguishable from one

point? What do you believe?

Here we come to an important discovery. Euclid can not simply say that two points
determine a line. The two points must be non-coincidental. It turns out that by
simply making the two points non-coincidental we assume a space between them.
And the assumption of that interval of space generates the entire set of real numbers
and the points that correspond to them. So we have 1, 2, . . . infinity. The infinity
is an undefined space that exists between the two points and beyond them in all
possible directions. This is the first peanut number. We can assign a number to
each point, but we can not assign an ordinary number to the undefined space, because
that space is not a point without size. It is something else that has size, and that size
is defined by the two points that bound it into an interval or gap. It is not a rational
(or algebraic/geometric) number, because we have defined the points on a line as the

loci of rational numbers. So we label the spatial interval as an irrational number.

The funny thing is that no matter how many points we mark off on our ruler, we will
always find gaps between the points. These gaps are the irrational numbers. You
can see now why irrational numbers are quite countable, just like regular numbers.
For example, there is only one gap number between the two points on our primordial
line. We can take the gap between the two points to include all possible space in all
directions outside the points as well as the space between the two points. Or we can
think in the mode of projective geometry and consider there to be 2 gaps between the
2 points: the finite “inside” interval that marks the shortest “straight-line” distance
between the two points, and the infinite interval that wraps around the “outside”
portion of the line to mark the longest “straight-line” distance between two points.
Or we can think of the Euclidean line as having a gap “beyond” the first point, a gap
“between” the two points, and a gap “beyond” the second point. In each of these
cases the gap numbers are quite countable because our points are also quite countable.
I think the projective viewpoint is the most reasonable, since it recognizes that an
inside must have an outside in order to exist as an inside and gives the same number

of gaps as there are points.

1 1

-
L
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If we have an indefinite number of points, then we have an indefinite number of gaps.
But we know that however many points we have, there will be either the same number
of gaps, or one more, or one less, depending on the viewpoint we take. The gap
numbers have an additional dimension of indefiniteness. They have an indefinite
size. Point numbers always have the same size — no size at all. ~ Gap numbers
automatically resolve the problem of continuity, because they automatically fill the
gaps between point numbers. The indefinite size of a gap number gives us the
freedom to define that parameter however we like. This means that space is a notion
that is up to the observer to define any way he likes. In some forms of math the
irrational gap number is represented by the undefined notion of a neighborhood.
Obviously we can label every neighborhood with the numerical value of the point that
defines it. The spatial property of size distorts the repeating decimal into a random,
non-repeating decimal. Randomness is chaos. Since by definition there is no way
to represent infinite chaos in a finite manner, we believe it into existence by adding
the spatial indefiniteness of the neighborhood concept and treat it as an irrational

number. It really is just the gap between two points.

A remarkable result of this property of gap numbers is that space necessarily becomes
completely elastic. Mathematicians marvel that a line interval of any size as if by

magic contains the same number of points.

Origin Point

S AN

The above diagram shows three parallel lines cut by diagonal lines that radiate from a
common origin point. We can draw as many lines as we like from the origin point so
that they intersect the parallel lines. Each line from the origin point will intersect all
three parallel lines at a different point on each parallel line. The trick that makes this
possible is that each of the parallel lines has its own set of gaps between the
intersecting points. There is a one-to-one correspondence between the gaps along
one parallel line and any other parallel line in the figure. The only difference is in
the size of the gaps. What happens here is a shift in scale. Points can not shift their

scale because they have no size. Only gaps can shift in scale because they have the
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property of size.

Once we understand this principle of gaps with no-limit spatial elasticity, the
mysterious “uncountability” of irrational numbers goes away. So does the problem
of continuity. The gaps perfectly link points together. There are no gaps in the
gaps because the gaps already are gaps. Only points can function as gaps between

gaps. Thus points and gaps are complementary types of “number”.

The basic principle in this whole system is that of freedom. Infinity is the
property-less “property” of lacking definition. We find it in its ultimate condition
only by dropping all definitions. Infinity is the freedom to set our own definitions
on whatever creations we choose to create. “Infinity” therefore is the essential
property of the Self. The Self in its essential nature is totally undefined. It is
totally unknown. Ironically most people are afraid of the unknown, not realizing
that they are simply afraid of who they really are — infinite potential. This is the
state of freedom. The Self can then choose to define itself any way it prefers. Of
course, this may include the creation of multiple viewpoints and the creation of
conventions so that the similarities and differences of viewpoints can be shared. A
viewpoint is a point from which an observer can view. It generates the possibility of

perspective.

The peanut gap numbers mathematically represent our freedom to define our space
any way we want to. We deliberately keep them undefined so we can use them with
total freedom. Gap numbers do not even necessarily have to generate space. For
example, they can generate time. Simply choose two moments in time that are not in
the same instant and you generate an interval of time. This is a gap. The gap may
be in any dimension you please. Even the properties of a set of gaps are totally

elastic. The points tell you where you are, and the gaps tell you wherein you are.

In addition to Cantor’s famous ‘“demonstration”, there is another method
mathematicians sometimes use to demonstrate the supposed non-denumerability of
irrationals. First we suppose that we have put all the points on a line segment
between point O (the starting point) and point 1 (the ending point) in a sequence:

[ ] a, a2, as, .. ...

We create an arbitrary interval whose length we set at 1/10, and place the first number
on our list at some point in that interval. Then we create an interval of length 1/10"2
(i.e. 1/100) and place the second number on the list inside it at some point. Then we
make an interval of 1/10"3 (i.e. 1/1000) and place the third number on the list inside
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that interval. We continue in this manner until we cover all the points on the list.
The sum of all the intervals happens to be the geometric series that converges on the
value:

° 1710 + 1/100 + 1/1000 + . . . . = (1/10) [1 / (1 = [1 / 10])] = 1/9.

So the sequence of all real numbers that form the interval of 1 unit in length can be
put in an interval of 1/9. Mathematicians find this “intuitively absurd” (e.g., Courant
and Robbins, p. 83.) The particular value of the intervals we chose for the demo is
arbitrary. We could have used 1/2, 1/272, 1/2”3, . . . as our set of intervals or any
such series that converges. The choice of 1/10 means we are using base 10. By
shrinking the initial interval we can shift our parallel lines closer and closer to the
“origin point”. When the diagonals all converge at the origin point we discover that
the set of points has a measure of zero. The interval is an illusion created by the

observer.

From our discussion above you can easily see that there is nothing absurd about this
interval demonstration. It fully agrees with the diagram we made above that
demonstrates the elasticity of space. We can scale the gaps any way we want and a
complete interval is still a complete interval. In this demonstration our tricky
mathematician has simply reversed the roles of the point and the neighborhood to
confuse the unwary. What he calls the “interval” is really the digit place in a
decimal. The sum of his intervals actually represents a single infinite decimal
number. Each digit place represents a single point without size. The sum does too.
Of course, since the points have no size, any sum of them has no size, so you get a
meaningless answer regardless of the gaps. The infinitely overlapping points show
us a model of the “origin point” on our previous drawing of scaling intervals. The
“number” that our mathematician places as a point within each “interval” actually
represents the “real” interval, the gap between the points that define the digits. We
do not need to know the exact value of the gap number (its non-periodic decimal
sequence, which in any case is unknowable by definition). We only need to know
for sure that each one is different. Its being in a separate interval assures us of this.
Once we insert the gap neighborhoods between the points in our sum of points, we
can scale the origin point into a line of any size we like. With another
transformation the line becomes a plane or a 3-space, and so on. Thus we find that
this little demonstration shows us once again how we can generate an n-dimensional

space from a single point.



